405 research outputs found

    An Iterative Joint Linear-Programming Decoding of LDPC Codes and Finite-State Channels

    Full text link
    In this paper, we introduce an efficient iterative solver for the joint linear-programming (LP) decoding of low-density parity-check (LDPC) codes and finite-state channels (FSCs). In particular, we extend the approach of iterative approximate LP decoding, proposed by Vontobel and Koetter and explored by Burshtein, to this problem. By taking advantage of the dual-domain structure of the joint decoding LP, we obtain a convergent iterative algorithm for joint LP decoding whose structure is similar to BCJR-based turbo equalization (TE). The result is a joint iterative decoder whose complexity is similar to TE but whose performance is similar to joint LP decoding. The main advantage of this decoder is that it appears to provide the predictability of joint LP decoding and superior performance with the computational complexity of TE.Comment: To appear in Proc. IEEE ICC 2011, Kyoto, Japan, June 5-9, 201

    Message-Passing Inference on a Factor Graph for Collaborative Filtering

    Full text link
    This paper introduces a novel message-passing (MP) framework for the collaborative filtering (CF) problem associated with recommender systems. We model the movie-rating prediction problem popularized by the Netflix Prize, using a probabilistic factor graph model and study the model by deriving generalization error bounds in terms of the training error. Based on the model, we develop a new MP algorithm, termed IMP, for learning the model. To show superiority of the IMP algorithm, we compare it with the closely related expectation-maximization (EM) based algorithm and a number of other matrix completion algorithms. Our simulation results on Netflix data show that, while the methods perform similarly with large amounts of data, the IMP algorithm is superior for small amounts of data. This improves the cold-start problem of the CF systems in practice. Another advantage of the IMP algorithm is that it can be analyzed using the technique of density evolution (DE) that was originally developed for MP decoding of error-correcting codes

    RegCLR: A Self-Supervised Framework for Tabular Representation Learning in the Wild

    Full text link
    Recent advances in self-supervised learning (SSL) using large models to learn visual representations from natural images are rapidly closing the gap between the results produced by fully supervised learning and those produced by SSL on downstream vision tasks. Inspired by this advancement and primarily motivated by the emergence of tabular and structured document image applications, we investigate which self-supervised pretraining objectives, architectures, and fine-tuning strategies are most effective. To address these questions, we introduce RegCLR, a new self-supervised framework that combines contrastive and regularized methods and is compatible with the standard Vision Transformer architecture. Then, RegCLR is instantiated by integrating masked autoencoders as a representative example of a contrastive method and enhanced Barlow Twins as a representative example of a regularized method with configurable input image augmentations in both branches. Several real-world table recognition scenarios (e.g., extracting tables from document images), ranging from standard Word and Latex documents to even more challenging electronic health records (EHR) computer screen images, have been shown to benefit greatly from the representations learned from this new framework, with detection average-precision (AP) improving relatively by 4.8% for Table, 11.8% for Column, and 11.1% for GUI objects over a previous fully supervised baseline on real-world EHR screen images.Comment: To be presented at the 36th Conference on Neural Information Processing Systems, New Orleans, USA, on December 2, 2022, at the First Table Representation Learning (TRL) Worksho

    Joint Equalization and Decoding via Convex Optimization

    Get PDF
    The unifying theme of this dissertation is the development of new solutions for decoding and inference problems based on convex optimization methods. Th first part considers the joint detection and decoding problem for low-density parity-check (LDPC) codes on finite-state channels (FSCs). Hard-disk drives (or magnetic recording systems), where the required error rate (after decoding) is too low to be verifiable by simulation, are most important applications of this research. Recently, LDPC codes have attracted a lot of attention in the magnetic storage industry and some hard-disk drives have started using iterative decoding. Despite progress in the area of reduced-complexity detection and decoding algorithms, there has been some resistance to the deployment of turbo-equalization (TE) structures (with iterative detectors/decoders) in magnetic-recording systems because of error floors and the difficulty of accurately predicting performance at very low error rates. To address this problem for channels with memory, such as FSCs, we propose a new decoding algorithms based on a well-defined convex optimization problem. In particular, it is based on the linear-programing (LP) formulation of the joint decoding problem for LDPC codes over FSCs. It exhibits two favorable properties: provable convergence and predictable error-floors (via pseudo-codeword analysis). Since general-purpose LP solvers are too complex to make the joint LP decoder feasible for practical purposes, we develop an efficient iterative solver for the joint LP decoder by taking advantage of its dual-domain structure. The main advantage of this approach is that it combines the predictability and superior performance of joint LP decoding with the computational complexity of TE. The second part of this dissertation considers the matrix completion problem for the recovery of a data matrix from incomplete, or even corrupted entries of an unknown matrix. Recommender systems are good representatives of this problem, and this research is important for the design of information retrieval systems which require very high scalability. We show that our IMP algorithm reduces the well-known cold-start problem associated with collaborative filtering systems in practice
    • …
    corecore